metabelian, supersoluble, monomial
Aliases: C62.24C23, D6:C4:14S3, C4:Dic3:3S3, C6.35(S3xD4), (C2xC12).16D6, D6:Dic3:18C2, C6.6(C4oD12), (C22xS3).3D6, C6.11D12:8C2, C3:2(C23.9D6), C3:3(D6.D4), C6.6(Q8:3S3), (C2xDic3).57D6, C62.C22:7C2, C2.12(D6:D6), C6.35(D4:2S3), (C6xC12).177C22, C2.9(D6.6D6), C2.12(D6.3D6), (C6xDic3).55C22, C32:4(C22.D4), (C2xC4).17S32, (C3xD6:C4):11C2, (C3xC4:Dic3):7C2, (C2xC3:S3).19D4, C22.82(C2xS32), (C3xC6).42(C2xD4), (S3xC2xC6).3C22, (C2xC6.D6):7C2, (C2xC3:D12).4C2, (C3xC6).12(C4oD4), (C2xC6).43(C22xS3), (C22xC3:S3).10C22, (C2xC3:Dic3).23C22, SmallGroup(288,502)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.24C23
G = < a,b,c,d,e | a6=b6=c2=1, d2=a3, e2=b3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=b3c, ece-1=a3b3c, ede-1=b3d >
Subgroups: 762 in 173 conjugacy classes, 46 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, C12, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C3xS3, C3:S3, C3xC6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C22.D4, C3xDic3, C3:Dic3, C3xC12, S3xC6, C2xC3:S3, C2xC3:S3, C62, Dic3:C4, C4:Dic3, D6:C4, D6:C4, C6.D4, C3xC22:C4, C3xC4:C4, S3xC2xC4, C2xD12, C2xC3:D4, C6.D6, C3:D12, C6xDic3, C2xC3:Dic3, C6xC12, S3xC2xC6, C22xC3:S3, C23.9D6, D6.D4, D6:Dic3, C62.C22, C3xC4:Dic3, C3xD6:C4, C6.11D12, C2xC6.D6, C2xC3:D12, C62.24C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C22xS3, C22.D4, S32, C4oD12, S3xD4, D4:2S3, Q8:3S3, C2xS32, C23.9D6, D6.D4, D6.6D6, D6:D6, D6.3D6, C62.24C23
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 43 9 45 11 47)(8 44 10 46 12 48)(19 30 23 28 21 26)(20 25 24 29 22 27)(31 40 33 42 35 38)(32 41 34 37 36 39)
(1 10)(2 11)(3 12)(4 7)(5 8)(6 9)(13 45)(14 46)(15 47)(16 48)(17 43)(18 44)(19 34)(20 35)(21 36)(22 31)(23 32)(24 33)(25 42)(26 37)(27 38)(28 39)(29 40)(30 41)
(1 33 4 36)(2 32 5 35)(3 31 6 34)(7 30 10 27)(8 29 11 26)(9 28 12 25)(13 41 16 38)(14 40 17 37)(15 39 18 42)(19 44 22 47)(20 43 23 46)(21 48 24 45)
(1 27 16 24)(2 28 17 19)(3 29 18 20)(4 30 13 21)(5 25 14 22)(6 26 15 23)(7 33 45 38)(8 34 46 39)(9 35 47 40)(10 36 48 41)(11 31 43 42)(12 32 44 37)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,45)(14,46)(15,47)(16,48)(17,43)(18,44)(19,34)(20,35)(21,36)(22,31)(23,32)(24,33)(25,42)(26,37)(27,38)(28,39)(29,40)(30,41), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,33,45,38)(8,34,46,39)(9,35,47,40)(10,36,48,41)(11,31,43,42)(12,32,44,37)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,45)(14,46)(15,47)(16,48)(17,43)(18,44)(19,34)(20,35)(21,36)(22,31)(23,32)(24,33)(25,42)(26,37)(27,38)(28,39)(29,40)(30,41), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,33,45,38)(8,34,46,39)(9,35,47,40)(10,36,48,41)(11,31,43,42)(12,32,44,37) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,43,9,45,11,47),(8,44,10,46,12,48),(19,30,23,28,21,26),(20,25,24,29,22,27),(31,40,33,42,35,38),(32,41,34,37,36,39)], [(1,10),(2,11),(3,12),(4,7),(5,8),(6,9),(13,45),(14,46),(15,47),(16,48),(17,43),(18,44),(19,34),(20,35),(21,36),(22,31),(23,32),(24,33),(25,42),(26,37),(27,38),(28,39),(29,40),(30,41)], [(1,33,4,36),(2,32,5,35),(3,31,6,34),(7,30,10,27),(8,29,11,26),(9,28,12,25),(13,41,16,38),(14,40,17,37),(15,39,18,42),(19,44,22,47),(20,43,23,46),(21,48,24,45)], [(1,27,16,24),(2,28,17,19),(3,29,18,20),(4,30,13,21),(5,25,14,22),(6,26,15,23),(7,33,45,38),(8,34,46,39),(9,35,47,40),(10,36,48,41),(11,31,43,42),(12,32,44,37)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H | 12I | ··· | 12N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 12 | 18 | 18 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 36 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | 12 | 4 | ··· | 4 | 12 | ··· | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D6 | D6 | C4oD4 | C4oD12 | S32 | S3xD4 | D4:2S3 | Q8:3S3 | C2xS32 | D6.6D6 | D6:D6 | D6.3D6 |
kernel | C62.24C23 | D6:Dic3 | C62.C22 | C3xC4:Dic3 | C3xD6:C4 | C6.11D12 | C2xC6.D6 | C2xC3:D12 | C4:Dic3 | D6:C4 | C2xC3:S3 | C2xDic3 | C2xC12 | C22xS3 | C3xC6 | C6 | C2xC4 | C6 | C6 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 4 | 8 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 |
Matrix representation of C62.24C23 ►in GL8(F13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
9 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 9 |
12 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 6 | 8 |
9 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 6 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 5 | 7 |
G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[9,3,0,0,0,0,0,0,8,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,12,0,0,0,0,0,0,2,9],[12,0,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,5,6,0,0,0,0,0,0,0,8],[9,3,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,6,5,0,0,0,0,0,0,3,7] >;
C62.24C23 in GAP, Magma, Sage, TeX
C_6^2._{24}C_2^3
% in TeX
G:=Group("C6^2.24C2^3");
// GroupNames label
G:=SmallGroup(288,502);
// by ID
G=gap.SmallGroup(288,502);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,64,590,219,100,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^6=c^2=1,d^2=a^3,e^2=b^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^3*c,e*c*e^-1=a^3*b^3*c,e*d*e^-1=b^3*d>;
// generators/relations