Copied to
clipboard

G = C62.24C23order 288 = 25·32

19th non-split extension by C62 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.24C23, D6:C4:14S3, C4:Dic3:3S3, C6.35(S3xD4), (C2xC12).16D6, D6:Dic3:18C2, C6.6(C4oD12), (C22xS3).3D6, C6.11D12:8C2, C3:2(C23.9D6), C3:3(D6.D4), C6.6(Q8:3S3), (C2xDic3).57D6, C62.C22:7C2, C2.12(D6:D6), C6.35(D4:2S3), (C6xC12).177C22, C2.9(D6.6D6), C2.12(D6.3D6), (C6xDic3).55C22, C32:4(C22.D4), (C2xC4).17S32, (C3xD6:C4):11C2, (C3xC4:Dic3):7C2, (C2xC3:S3).19D4, C22.82(C2xS32), (C3xC6).42(C2xD4), (S3xC2xC6).3C22, (C2xC6.D6):7C2, (C2xC3:D12).4C2, (C3xC6).12(C4oD4), (C2xC6).43(C22xS3), (C22xC3:S3).10C22, (C2xC3:Dic3).23C22, SmallGroup(288,502)

Series: Derived Chief Lower central Upper central

C1C62 — C62.24C23
C1C3C32C3xC6C62S3xC2xC6D6:Dic3 — C62.24C23
C32C62 — C62.24C23
C1C22C2xC4

Generators and relations for C62.24C23
 G = < a,b,c,d,e | a6=b6=c2=1, d2=a3, e2=b3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=b3c, ece-1=a3b3c, ede-1=b3d >

Subgroups: 762 in 173 conjugacy classes, 46 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, C12, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C3xS3, C3:S3, C3xC6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C22.D4, C3xDic3, C3:Dic3, C3xC12, S3xC6, C2xC3:S3, C2xC3:S3, C62, Dic3:C4, C4:Dic3, D6:C4, D6:C4, C6.D4, C3xC22:C4, C3xC4:C4, S3xC2xC4, C2xD12, C2xC3:D4, C6.D6, C3:D12, C6xDic3, C2xC3:Dic3, C6xC12, S3xC2xC6, C22xC3:S3, C23.9D6, D6.D4, D6:Dic3, C62.C22, C3xC4:Dic3, C3xD6:C4, C6.11D12, C2xC6.D6, C2xC3:D12, C62.24C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C22xS3, C22.D4, S32, C4oD12, S3xD4, D4:2S3, Q8:3S3, C2xS32, C23.9D6, D6.D4, D6.6D6, D6:D6, D6.3D6, C62.24C23

Smallest permutation representation of C62.24C23
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 43 9 45 11 47)(8 44 10 46 12 48)(19 30 23 28 21 26)(20 25 24 29 22 27)(31 40 33 42 35 38)(32 41 34 37 36 39)
(1 10)(2 11)(3 12)(4 7)(5 8)(6 9)(13 45)(14 46)(15 47)(16 48)(17 43)(18 44)(19 34)(20 35)(21 36)(22 31)(23 32)(24 33)(25 42)(26 37)(27 38)(28 39)(29 40)(30 41)
(1 33 4 36)(2 32 5 35)(3 31 6 34)(7 30 10 27)(8 29 11 26)(9 28 12 25)(13 41 16 38)(14 40 17 37)(15 39 18 42)(19 44 22 47)(20 43 23 46)(21 48 24 45)
(1 27 16 24)(2 28 17 19)(3 29 18 20)(4 30 13 21)(5 25 14 22)(6 26 15 23)(7 33 45 38)(8 34 46 39)(9 35 47 40)(10 36 48 41)(11 31 43 42)(12 32 44 37)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,45)(14,46)(15,47)(16,48)(17,43)(18,44)(19,34)(20,35)(21,36)(22,31)(23,32)(24,33)(25,42)(26,37)(27,38)(28,39)(29,40)(30,41), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,33,45,38)(8,34,46,39)(9,35,47,40)(10,36,48,41)(11,31,43,42)(12,32,44,37)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,45)(14,46)(15,47)(16,48)(17,43)(18,44)(19,34)(20,35)(21,36)(22,31)(23,32)(24,33)(25,42)(26,37)(27,38)(28,39)(29,40)(30,41), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,33,45,38)(8,34,46,39)(9,35,47,40)(10,36,48,41)(11,31,43,42)(12,32,44,37) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,43,9,45,11,47),(8,44,10,46,12,48),(19,30,23,28,21,26),(20,25,24,29,22,27),(31,40,33,42,35,38),(32,41,34,37,36,39)], [(1,10),(2,11),(3,12),(4,7),(5,8),(6,9),(13,45),(14,46),(15,47),(16,48),(17,43),(18,44),(19,34),(20,35),(21,36),(22,31),(23,32),(24,33),(25,42),(26,37),(27,38),(28,39),(29,40),(30,41)], [(1,33,4,36),(2,32,5,35),(3,31,6,34),(7,30,10,27),(8,29,11,26),(9,28,12,25),(13,41,16,38),(14,40,17,37),(15,39,18,42),(19,44,22,47),(20,43,23,46),(21,48,24,45)], [(1,27,16,24),(2,28,17,19),(3,29,18,20),(4,30,13,21),(5,25,14,22),(6,26,15,23),(7,33,45,38),(8,34,46,39),(9,35,47,40),(10,36,48,41),(11,31,43,42),(12,32,44,37)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C4A4B4C4D4E4F4G6A···6F6G6H6I6J6K12A···12H12I···12N
order122222233344444446···66666612···1212···12
size11111218182244666612362···244412124···412···12

42 irreducible representations

dim111111112222222244444444
type++++++++++++++++-+++
imageC1C2C2C2C2C2C2C2S3S3D4D6D6D6C4oD4C4oD12S32S3xD4D4:2S3Q8:3S3C2xS32D6.6D6D6:D6D6.3D6
kernelC62.24C23D6:Dic3C62.C22C3xC4:Dic3C3xD6:C4C6.11D12C2xC6.D6C2xC3:D12C4:Dic3D6:C4C2xC3:S3C2xDic3C2xC12C22xS3C3xC6C6C2xC4C6C6C6C22C2C2C2
# reps111111111123214812111222

Matrix representation of C62.24C23 in GL8(F13)

10000000
01000000
00100000
00010000
00000100
0000121200
000000120
000000012
,
120000000
012000000
001210000
001200000
00001000
00000100
000000120
000000012
,
98000000
34000000
00010000
00100000
00001000
00000100
00000042
000000129
,
126000000
01000000
001200000
000120000
000012000
00001100
00000050
00000068
,
93000000
34000000
001200000
000120000
000012000
000001200
00000063
00000057

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[9,3,0,0,0,0,0,0,8,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,12,0,0,0,0,0,0,2,9],[12,0,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,5,6,0,0,0,0,0,0,0,8],[9,3,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,6,5,0,0,0,0,0,0,3,7] >;

C62.24C23 in GAP, Magma, Sage, TeX

C_6^2._{24}C_2^3
% in TeX

G:=Group("C6^2.24C2^3");
// GroupNames label

G:=SmallGroup(288,502);
// by ID

G=gap.SmallGroup(288,502);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,64,590,219,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=c^2=1,d^2=a^3,e^2=b^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^3*c,e*c*e^-1=a^3*b^3*c,e*d*e^-1=b^3*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<